Takk for at du vil dele artikkelen

Den du deler artikkelen med, kan lese og eventuelt lytte til heile artikkelen.
Det gjer vi for at fleire skal oppdage DAG OG TID.

Namnet ditt vert synleg for alle du deler artikkelen med.

TeknologiFeature

Klokka

Kvar veke les vi inn utvalde artiklar, som abonnentane våre kan lytte til.
Lytt til artikkelen
Solur gjev ikkje tid i mørke, og vassura er ikkje stabile nok, så den mekaniske klokka var heilt revolusjonerande.

Solur gjev ikkje tid i mørke, og vassura er ikkje stabile nok, så den mekaniske klokka var heilt revolusjonerande.

Illustrasjon frå «Horologium Sapientae» av H. Seuse / Wikimedia Commons

Solur gjev ikkje tid i mørke, og vassura er ikkje stabile nok, så den mekaniske klokka var heilt revolusjonerande.

Solur gjev ikkje tid i mørke, og vassura er ikkje stabile nok, så den mekaniske klokka var heilt revolusjonerande.

Illustrasjon frå «Horologium Sapientae» av H. Seuse / Wikimedia Commons

5444
20220923
5444
20220923

Kanskje nokon i familien har ei bestefarsklokke, eller du har sett ein slik staseleg mekanisme på eit museum? Den mekaniske klokka er blant dei viktigaste oppfinningane menneska har laga, og ho påverkar oss langt inn i vår digitale tidsalder.

Klokkemakarar var ekspertar på å lage nøyaktige mekanismar med tannhjul og gir som kunne overføre krefter. Klokker var i mange hundre år den mest avanserte maskinkunsten, og dei inspirerte oppfinnarar til å konstruere nøyaktige løysingar både for revolusjonerande maskiner, slik som dampmotoren, og for underhaldande maskiner, slik som speledåsen.

Ei maskin er eit samspel av mekaniske krefter som er tilpassa slik at ei rørslekraft får den retninga, intensiteten og bruksmåten som gir det resultatet designaren ynskjer. Ved hjelp av eit maskineri kan eit stort tal instrument eller operative delar rørast i lag i perfekte harmoniske rørsler. Kompliserte operasjonar kan utførast med ein presisjon som overskrid evnene til sjølv den dyktigaste handverkar. Samanlikna med vanleg kroppsarbeid er ei maskin meir presis, effektiv og kraftfull, og produktet av operasjonen vert mykje betre.

Få ting viser dette betre enn den gode gamle klokka. Tenk om eit menneske skulle forsøkt å halde tida heilt sjølv. Det ville rett og slett ikkje gått an. Solur gjev ikkje tid i mørket, og vassur er ikkje stabile nok, så den mekaniske klokka var heilt revolusjonerande.

Ei klokke er ein mekanisme som kan måle tid heilt eksakt ved hjelp av nøye regulerte rørsler. Krafta som flyttar hjula og gira til eit urverk, treng ikkje vere stor, men ho må vere heilt jamt fordelt. Den grunnleggande typen klokker frå 1300-talet får krafta si frå lodd i stålkjede under urverket. Rørsla frå dei sakte søkkande lodda må dempast slik at det kan gå mange dagar før dei må trekkast opp att.

Det er viktig at rørsla ikkje kan akselererast, for då vil klokka gå ujamt og for fort. For at klokka skal kunne telje, det vil seie ha ei kvantitativ og absolutt fast eining for tidtakinga, treng ho ein reguleringsmekanisme, som ho får ved at den sirkulære rørsla i tannhjula er synkron med ei fram-og-tilbake-rørsle i ein pendel.

Pendelen vert driven av lodda, og han svingar heilt jamt mellom to ytterpunkt (tikk, takk) og sikrar i sin tur at tannhjul flyttar seg heilt jamt. Pendelen tvingar urverket til å utløyse eit akkurat like stort kvantum av mekanisk energi i kvar pendelsving, og klokka gjev oss heilt like tidsintervall.

Urverket er altså ei maskin for å måle tid, men òg for å kommunisere tid. Når pendelen har riktig lengde og svingar med riktig fart, bruker han 1 sekund mellom kvart ytterpunkt. Han er kopla til eit tannhjul som går heilt rundt 60 gonger. Tannhjulet er kopla til ein visar som rykker fram éin gong i minuttet. Endå eit tannhjul er òg kopla til, som gjev eit fast tal (til dømes 8) omdreiingar på ein time. Dette er igjen kopla til ein timevisar. Klokker av denne typen vil kunne gå i cirka åtte dagar når ho er trekt fullt opp.

Klokka er eit døme på kor stor rasjonell kontroll menneska kan få over fysiske materiale, og har til og med påverka utviklinga av datamaskiner. Utan den nyskapinga som kontinuerleg eksakt tidsmåling representerte, ville vi ikkje hatt elektroniske datamaskiner. Desse er nemleg avhengige av velregulerte tikk-takk for å kunne utføre grunnleggande operasjonar og hoppe vidare frå ein operasjon til den neste. Samspelet mellom dei ulike mikroelektroniske komponentane er finstemt, og dei må vere synkroniserte, akkurat som pendelen og urverket.

Datamaskiner har sjølvsagt ikkje innebygde mekaniske klokker som leverer klokketikk. I staden har dei klokker baserte på elektrostriksjon, det at ein kan deformere materiale ved å bruke elektrisk spenning på det.

Elektrostriksjonfenomenet vert brukt i kvartsklokker. Når ein festar to elektriske elektrodar på ein krystall og skaper eit elektrisk felt i krystallen, vil krystallen verte deformert. Han går tilbake til opphavleg form med regulære intervall. Når dette skjer, skapar spenningsendringa i krystallen ein straum som set i gang andre prosessar i systemet, til dømes teljing av klokketikk.

Kvartskrystallar gjer dette med svært nøyaktig rytme, og vi kan derfor bruke dei til å rekne tid. Frekvensen kan vi variere med utforminga av krystallen, materialet til krystallen og elektrodane. I dagens datamaskiner har vi klokker som kan utføre mange milliardar tikk per sekund.

I datamaskiner er klokka ein eigen batteridriven komponent. Han tel klikk og gjer dei om til mikrosekund eller liknande. 0-punktet for tidsteljinga er eit fast tidspunkt som vert kalla epoken. I Windows-maskiner er epoken sett til 1. januar 1601, og eininga han tel med, er tidels mikrosekund.

Bestefarsklokka viser tida med visarane som er kopla mekanisk til sjølve urverket, men slik er det ikkje med datamaskiner. Skal ein vise eit meiningsfullt tidspunkt på skjermen, må ein nytte programvare som hentar tidseiningane som har gått sidan epoken, reknar ut klokkeslettet i tidssona ein er i, og deretter teiknar klokkeslettet på skjermen. Tida kan kommuniserast med tal, slik som «14:35», men tida kan òg visast med ei teikning av visarar på ei urskive.

Neste gong du sjekkar klokka på mobilen, kan du tenkje på at denne tillitvekkande representasjonen av tid kjem frå ei 700 år gammal mekanisk oppfinning.

Lars Nyre og Bjørnar Tessem

Digital tilgang til DAG OG TID – heilt utan binding

Prøv ein månad for kr 49.
Deretter kr 199 per månad. Stopp når du vil.


Eller kjøp eit anna abonnement

Kanskje nokon i familien har ei bestefarsklokke, eller du har sett ein slik staseleg mekanisme på eit museum? Den mekaniske klokka er blant dei viktigaste oppfinningane menneska har laga, og ho påverkar oss langt inn i vår digitale tidsalder.

Klokkemakarar var ekspertar på å lage nøyaktige mekanismar med tannhjul og gir som kunne overføre krefter. Klokker var i mange hundre år den mest avanserte maskinkunsten, og dei inspirerte oppfinnarar til å konstruere nøyaktige løysingar både for revolusjonerande maskiner, slik som dampmotoren, og for underhaldande maskiner, slik som speledåsen.

Ei maskin er eit samspel av mekaniske krefter som er tilpassa slik at ei rørslekraft får den retninga, intensiteten og bruksmåten som gir det resultatet designaren ynskjer. Ved hjelp av eit maskineri kan eit stort tal instrument eller operative delar rørast i lag i perfekte harmoniske rørsler. Kompliserte operasjonar kan utførast med ein presisjon som overskrid evnene til sjølv den dyktigaste handverkar. Samanlikna med vanleg kroppsarbeid er ei maskin meir presis, effektiv og kraftfull, og produktet av operasjonen vert mykje betre.

Få ting viser dette betre enn den gode gamle klokka. Tenk om eit menneske skulle forsøkt å halde tida heilt sjølv. Det ville rett og slett ikkje gått an. Solur gjev ikkje tid i mørket, og vassur er ikkje stabile nok, så den mekaniske klokka var heilt revolusjonerande.

Ei klokke er ein mekanisme som kan måle tid heilt eksakt ved hjelp av nøye regulerte rørsler. Krafta som flyttar hjula og gira til eit urverk, treng ikkje vere stor, men ho må vere heilt jamt fordelt. Den grunnleggande typen klokker frå 1300-talet får krafta si frå lodd i stålkjede under urverket. Rørsla frå dei sakte søkkande lodda må dempast slik at det kan gå mange dagar før dei må trekkast opp att.

Det er viktig at rørsla ikkje kan akselererast, for då vil klokka gå ujamt og for fort. For at klokka skal kunne telje, det vil seie ha ei kvantitativ og absolutt fast eining for tidtakinga, treng ho ein reguleringsmekanisme, som ho får ved at den sirkulære rørsla i tannhjula er synkron med ei fram-og-tilbake-rørsle i ein pendel.

Pendelen vert driven av lodda, og han svingar heilt jamt mellom to ytterpunkt (tikk, takk) og sikrar i sin tur at tannhjul flyttar seg heilt jamt. Pendelen tvingar urverket til å utløyse eit akkurat like stort kvantum av mekanisk energi i kvar pendelsving, og klokka gjev oss heilt like tidsintervall.

Urverket er altså ei maskin for å måle tid, men òg for å kommunisere tid. Når pendelen har riktig lengde og svingar med riktig fart, bruker han 1 sekund mellom kvart ytterpunkt. Han er kopla til eit tannhjul som går heilt rundt 60 gonger. Tannhjulet er kopla til ein visar som rykker fram éin gong i minuttet. Endå eit tannhjul er òg kopla til, som gjev eit fast tal (til dømes 8) omdreiingar på ein time. Dette er igjen kopla til ein timevisar. Klokker av denne typen vil kunne gå i cirka åtte dagar når ho er trekt fullt opp.

Klokka er eit døme på kor stor rasjonell kontroll menneska kan få over fysiske materiale, og har til og med påverka utviklinga av datamaskiner. Utan den nyskapinga som kontinuerleg eksakt tidsmåling representerte, ville vi ikkje hatt elektroniske datamaskiner. Desse er nemleg avhengige av velregulerte tikk-takk for å kunne utføre grunnleggande operasjonar og hoppe vidare frå ein operasjon til den neste. Samspelet mellom dei ulike mikroelektroniske komponentane er finstemt, og dei må vere synkroniserte, akkurat som pendelen og urverket.

Datamaskiner har sjølvsagt ikkje innebygde mekaniske klokker som leverer klokketikk. I staden har dei klokker baserte på elektrostriksjon, det at ein kan deformere materiale ved å bruke elektrisk spenning på det.

Elektrostriksjonfenomenet vert brukt i kvartsklokker. Når ein festar to elektriske elektrodar på ein krystall og skaper eit elektrisk felt i krystallen, vil krystallen verte deformert. Han går tilbake til opphavleg form med regulære intervall. Når dette skjer, skapar spenningsendringa i krystallen ein straum som set i gang andre prosessar i systemet, til dømes teljing av klokketikk.

Kvartskrystallar gjer dette med svært nøyaktig rytme, og vi kan derfor bruke dei til å rekne tid. Frekvensen kan vi variere med utforminga av krystallen, materialet til krystallen og elektrodane. I dagens datamaskiner har vi klokker som kan utføre mange milliardar tikk per sekund.

I datamaskiner er klokka ein eigen batteridriven komponent. Han tel klikk og gjer dei om til mikrosekund eller liknande. 0-punktet for tidsteljinga er eit fast tidspunkt som vert kalla epoken. I Windows-maskiner er epoken sett til 1. januar 1601, og eininga han tel med, er tidels mikrosekund.

Bestefarsklokka viser tida med visarane som er kopla mekanisk til sjølve urverket, men slik er det ikkje med datamaskiner. Skal ein vise eit meiningsfullt tidspunkt på skjermen, må ein nytte programvare som hentar tidseiningane som har gått sidan epoken, reknar ut klokkeslettet i tidssona ein er i, og deretter teiknar klokkeslettet på skjermen. Tida kan kommuniserast med tal, slik som «14:35», men tida kan òg visast med ei teikning av visarar på ei urskive.

Neste gong du sjekkar klokka på mobilen, kan du tenkje på at denne tillitvekkande representasjonen av tid kjem frå ei 700 år gammal mekanisk oppfinning.

Lars Nyre og Bjørnar Tessem

Den grunnleggande typen klokker frå 1300-talet får krafta si frå lodd i stålkjede under urverket.

Emneknaggar

Fleire artiklar

Bjørn Olaf Johannessen er manusforfattar for ei rekkje filmar og TV-seriar. Årets roman er den tredje sidan debuten i 2017.

Bjørn Olaf Johannessen er manusforfattar for ei rekkje filmar og TV-seriar. Årets roman er den tredje sidan debuten i 2017.

Foto: Jacob Johannessen Maske

BokMeldingar

Inni er me like, men det er utanpå

Bjørn Olaf Johannessen skriv artig, men mest utanpå om det innvendige.

Odd W. Surén
Bjørn Olaf Johannessen er manusforfattar for ei rekkje filmar og TV-seriar. Årets roman er den tredje sidan debuten i 2017.

Bjørn Olaf Johannessen er manusforfattar for ei rekkje filmar og TV-seriar. Årets roman er den tredje sidan debuten i 2017.

Foto: Jacob Johannessen Maske

BokMeldingar

Inni er me like, men det er utanpå

Bjørn Olaf Johannessen skriv artig, men mest utanpå om det innvendige.

Odd W. Surén
Stridsvogner øver på å slå attende kinesiske landgangsstyrkar på Penghu-øyane i Taiwansundet.

Stridsvogner øver på å slå attende kinesiske landgangsstyrkar på Penghu-øyane i Taiwansundet.

Foto: Taiwan Military News Agency / Taiwan's Defense Ministry / AP / NTB

UtanriksSamfunn

Starten på ein storkrig?

For tida bur eg i eit fredeleg, demokratisk og velståande land, som risikerer å utløysa den neste storkrigen i verda.

HalvorEifring
Stridsvogner øver på å slå attende kinesiske landgangsstyrkar på Penghu-øyane i Taiwansundet.

Stridsvogner øver på å slå attende kinesiske landgangsstyrkar på Penghu-øyane i Taiwansundet.

Foto: Taiwan Military News Agency / Taiwan's Defense Ministry / AP / NTB

UtanriksSamfunn

Starten på ein storkrig?

For tida bur eg i eit fredeleg, demokratisk og velståande land, som risikerer å utløysa den neste storkrigen i verda.

HalvorEifring

les DAG OG TID.
Vil du òg prøve?

Her kan du prøve vekeavisa DAG OG TID gratis i tre veker.
Prøveperioden stoppar av seg sjølv.

Komplett

Papiravisa
Digital utgåve av papiravisa
Digitale artiklar
Digitalt arkiv
Lydavis

Digital

Digital utgåve av papiravisa
Digitale artiklar
Digitalt arkiv
Lydavis

Komplett

Papiravisa
Digital utgåve av papiravisa
Digitale artiklar
Digitalt arkiv
Lydavis

Digital

Digital utgåve av papiravisa
Digitale artiklar
Digitalt arkiv
Lydavis